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Abstract 

 

This paper discusses the numerical approximation of flow problems, in particular the large eddy simulation of 

turbulent flow and the simulation of laminar immiscible two-phase flow. The computations for both applications are 

performed with a coupled solution approach of the Navier-Stokes equations discretized with the finite element 

method .Firstly, a new implementation strategy for large eddy simulation of turbulent flow is discussed. The 

approach is based on the vibrational multiscale method, where scale ranges are separated by vibrational projection. 

The method uses a standard Navier–Stokes model for representing the coarser of the resolved scales, and adds a sub 

grid viscosity model to the smaller of the resolved scales. The scale separation within the space of resolved scales is 

implemented in a purely algebraic way based on a plain aggregation algebraic multigrid restriction operator. A 

Fourier analysis underlines the importance of projective scale separations and that the proposed model does not 

affect consistency of the numerical scheme. Numerical examples show that the method provides better results than 

other state-of-the-art methods for computations at low resolutions. Secondly, a method for modeling laminar two-

phase flow problems in the vicinity of contact lines is proposed. This formulation combines the advantages of a level 

set model and of a phase field model: Motion of contact lines and imposition of contact angles are handled like for a 

phase field method, but the computational costs are similar to the ones of a level set implementation. The model is 

realized by formulating the Cahn–Hilliard equation as an extension of a level set model.The phase-field specific 

terms are only active in the vicinity of contact lines. Moreover, various aspects of a conservative level set method 

discretized with finite elements regarding the accuracy of force balance and prediction in jump of pressure between 

the inside and outside of a circular bubble are tested systematically. It is observed that the errors in velocity are 

mostly due to inaccuracies in curvature evaluation, whereas the errors in pressure prediction mainly come from the 

finite width of the interface. The error in both velocity and pressure decreases with increasing number of mesh 

points. 

1. INTRODUCTION 

The numerical simulation of fluid dynamics is one of the main fields in computational mathematics. Simulation is 

today both an alternative and a complement to experiments in many engineering disciplines as it helps in predicting 

the behavior of fluids. Moreover, simulation permits to systematically improve the design and material properties of 

products by means of optimization algorithms. Such a procedure would be tremendously expensive if it had to be 

done by prototyping and other experimental means. Simulation is thus a tool that renders technical processes more 

effective. One interesting area of research in fluid dynamics is the behavior of turbulent incompressible flow. 

Turbulent flows often occur in engineering applications, for example, in the air flow around a vehicle, the water 

flow in turbines of hydroelectric power plants as well as in water networks and oil pipelines with high throughput. 

For instance, relevant issues are the determination and the control of aerodynamic drag as well as efficiency of 

engines. Another area of active research is multiphase flow, a setting that involves two or more different fluids. 

There is a wide range of applications that involve multiple fluids and where numerical simulation is extensively 

used. An exceptionally challenging problem is computational combustion, where different fluids and flame fronts 

need to be represented. Often, the flows occurring in combustion 

Are turbulent. But there are also a lot of multi-phase settings where the flow field is laminar and thus more regular. 

One such application is intravenous therapy in medicine. The objective of numerical simulations is to understand 

how bubbles consisting of oleaginous substances are transported and resolved in the circulation of blood. These 

processes are often strongly driven by surface tension, a force that strives after keeping different fluids separated. A 

similar application is the modeling of the absorption of air in the blood circulation in human lungs. Multiphase flow 

is a phenomenon that is particularly relevant also in subsurface flow. In this area, it is often assumed that the 

individual fluids are well separated, that is, the fluids do not mix and there are no additional particles resolved in the 

fluids. This thesis contributes to the simulation of such laminar well-separated two-phase flows. For subsurface 



flows, an additional difficulty arises, namely the interaction of systems consisting of different fluids with solids, 

called capillarity. This interaction takes place on so-called contact lines, locations where the interface (separating 

two fluids) meets a solid. The properties of the solid and the composition of the fluid give rise to a phenomenon 

called wetting, indicating which fluid preferably is in contact with the solid. Applications of this kind are the 

modeling of groundwater basins and oil extraction from subsurface reservoirs driven by water injection. The pores 

of rock where the fluid moves are often of the order of a few millimeters or less, whereas the actual simulation 

region can extend over thousands of square kilometers. In order to tackle problems with such an enormously wide 

range of scales, simplifications need to be applied. One example is to perform small-scale flow simulations with 

detailed rock structures in order to determine the permeability of various stone configurations. Such effective 

parameters are then used as input to a large scale simulation, usually based on Darcy’s law [17]. Other applications 

of multiple fluids in contact with solids are found in industrial processes like sintering, where mixtures of different 

fluids and their solidification are tracked; lab-on-a chip processes, which form the basic component for microsystem 

design in the biomedical industry; and inkjet printing. 

This paper discusses the equations that describe the flow of individual fluids, the Navier–Stokes equations. Next, an 

introduction to turbulence is given, which is followed by a presentation of numerical models for the simulation of 

laminar two-phase flow. The papers included in this identify possible directions of future research. 

2. NUMERICAL METHODS FOR THE NAVIER–STOKES EQUATIONS 

The motion of fluids at low and medium velocities in a connected computational domain 

  (spatial dimension d = 2, 3) is given by the incompressible Navier–Stokes equations [35], [62], [73], 
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The vector u denotes the d components of fluid velocity and p denotes the fluid’s (dynamic) pressure. The rank-2 

tensor                                                    represents the viscous stress tensor for a Newtonian fluid. The fluid density is  

denoted by ρ, and the fluid’s (dynamic) viscosity by µ. In single-phase fluids, density is constant due to the 

incompressibility assumption. The term f specifies external forces acting on the fluid.  

The system of Navier–Stokes equations (2.1)–(2.2) is completed by a divergence- free initial velocity field,              

 (  )            With                                                                                                                                    (   ) 

And application-specific boundary conditions (cf. Gresho and Sani [32] for a discussion of various possibilities). In 

this paper, we consider flow subject to no-slip boundary conditions 

                                                               

And natural (inflow/outflow) boundary conditions 
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Where n denotes the unit outer normal on the domain boundary ¡h and h is some external traction boundary force. 

The boundary subdomains ¡g and ¡h are assumed to be non-overlapping and to span the whole boundary. For the 

numerical approximation of the equations of fluid flows, there are various methods available. The most popular ones 

are the finite volume method, the finite difference method, and the finite element method. A comparative 

introduction of these methods can be found in Quartapelle [74]. The algorithms developed in this thesis are based on 

the finite element method (FEM). There is a vast literature discussing various aspects of the finite element 

discretization of system (2.1)–(2.2). Mathematical aspects are discussed, e.g., in Glowinski [28] and Gunzburger 

[35]. The book by Gresho and Sani [32] focuses on practical issues for implementation such as boundary conditions, 



discretization schemes, and stabilization. The work by Elman, Silvester & Wathen [23] and Turek [88] put special 

emphasis on algorithmic matters like efficient numerical linear algebra for the flow equations. 

2.1 WEAK FORM AND SPATIAL DISCRETIZATION 

The Navier–Stokes equations (2.1)–(2.2) depend on both space and time. Most discretization approaches split the 

approximation into separate approximations for spatial and temporal part. For setting up the spatial FE 

approximation, the first step is to rewrite the system of equations (2.1)–(2.2) in variational form. To this end, we 

define the space of admissible velocity solutions at a certain time instant by   , and the space of admissible 

pressure solutions by      ( ) the variational problem corresponding to (2.1)–(2.2) is to find, at each instant in 

time, a pair   ((    )  (  ))       

Such that   
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Holds for all test function(   )          the form(   )  denotes the standard 

    Inner product. 

The spatial discretization of system (2.6) replaces the (infinite-dimensional) solution function spaces Vu and Vp by 

finite-dimensional subspaces V h u and V h p. 

Then, only the projection of theNavier–Stokes equations onto finite dimensional test function spaces V h u £V h p is 

considered, resulting in numerical approximations uh and ph. The discretization considered in this thesis use a 

decomposition of the computational domain into small subsets of characteristic size h, called elements. We mainly 

focus on quadrilateral elements in 2D and hexahedral (brick) elements in 3D. The basic functions that span Vu and 

Vp are chosen to be piecewise polynomials within the elements, and continuous over the whole domain . For the 

representation of the velocity u, equally shaped basis functions are used for each spatial component. For instance, 

we will denote a finite element approximation with quadratic basis functions for velocity and linear basis functions 

for pressure on the elements by Qd 2 Q1. On each element, the basic functions for u are defined as a tensor product 

of Lagrangian interpolation polynomials of degree two in each coordinate direction [43], and the pressure basis 

functions as tensor product of linear Lagrangian interpolants. Globally, the basis functions are nonzero in exactly 

one node, and zero on all the others. The support of the basis functions is confined to a patch of elements around the 

respective nodes. 

2.2 STABILITY OF SPATIAL DISCRETIZATION 

For the spatial discretization to be stable, a compatibility condition between the approximation of velocity and 

pressure must be satisfied, namely 
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Where the constant ¯ does not depend on the mesh size parameter h. This condition was independently derived by 

Ladyzhenskaya [58], Babuška [4], and Brezzi [12] and is called LBB condition or inf–sup condition. The condition 

ensures that the divergence matrix discretizing the is of full rank, and hence the discretized system has a unique 

solution for velocity and pressure. 

The element so-called Taylor–Hood element pair, satisfies the LBB condition [82], whereas the element 

combination does not. We refer to Donea & Huerta [18] and Gresho & Sani [32] for an extensive discussion of 

LBB-stable elements. However, an element pair that does not satisfy the LBB condition (2.7) can yet be modified so 

that stability of discretization is obtained. Papers I and II investigate flow problems with the element pair. For 

stabilization, an artificial diffusion on the pressure space is introduced in a systematic way, so that consistency is 

preserved. This approach [38], [45], [84] modifies the test functions in the discrete variational form (2.6), resulting 

in a Petrov–Galerkin type scheme. Similar stabilization approaches have been developed to avoid unphysical 

oscillations in velocity that otherwise appear in convection-dominated regimes for the standard central difference 

approximations introduced by the Galerkin FEM [18], [31], [32]. We refer to Braack et al. [10] for a review of 

various commonly used stabilization techniques. 

2.3 TIME DISCRETIZATION 

For discretization in time, it is usual to use some standard procedure developed for ordinary differential equations 

and differential–algebraic equations, see Donea & Huerta [18] and Hairer et al. [36], [37] for derivation and analysis 

of numerical schemes. For schemes that treat both convection and diffusion explicitly, linear stability theory sets a 

restrictive limit on the time step ¢t in terms of the spatial mesh size, namely                     
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See, e.g., the discussion in [52]. For applications where the viscosity is not too small compared to the velocity, 

(semi-)implicit time stepping schemes are often preferred in order to avoid the diffusive stability constraint. Popular 

schemes are variants of the one-step theta method [51] and the BDF-2 method. For a coupled solution approach, 

stability requires implicit time discretization of the (differential–algebraic) terms . These terms enforce the 

divergence-free condition on the velocity in Lagrangian multiplier form, see, e.g., Gunzburger [35] and Lions [62]. 

Harlow and Welch [39] proposed to implement time propagation of The Navier–Stokes equations by fractional time 

stepping strategy, and which was then recast as a projection scheme by Chorin  [15] and Temam [83]. This concept 

has been mathematically justified for the finite element method by Guermond and Quartapelle [33], [34]. Projection 

schemes first advance velocities subject to the momentum equation with pressure extrapolated from the old time 

step. The resulting velocity is in general not divergence-free, so a pressure Poisson equation is solved with forcing 

given by the divergence of the medium-step velocity in a second step, in order to correct the velocity. Projection 

schemes are to date the most popular variant for the numerical approximation of the Navier–Stokes equations [74]. 

The subsystems resulting from fractional time stepping are of easier structure than the original saddle-point system. 

However, each of the sub problems needs to be equipped with suitable boundary conditions for well-posedness, 

which are usually not the physical ones. This can yield a non-consistent approximation close to the boundary. We 

refer to Gresho & Sani [32] and Quartapelle [74] for discussion, and to the articles [13] and [52] for recent 

developments. 

The work presented in this thesis applies an alternative approach where the system remains coupled. Coupled 

schemes solve for pressure and velocity as one algebraic system, with boundary conditions set according to physical 

reasoning. However, the algebraic system is in general more challenging because of its saddle point nature, and puts 

high demands on numerical linear algebra 

2.4   NUMERICAL LINEAR ALGEBRA FOR COUPLED DISCRETIZATIONS 

The introduction of spatial and temporal discretization schemes for the Navier–Stokes system (2.6) results in a 

nonlinear system to be solved. For resolving the non-linearity, fixed point methods or Newton-type iterations are 

usually applied, finally yielding a system of linear equations. The Lagrangian basis functions are localized, so the 

final coefficient matrix is sparse. For the solution of the saddle-point Navier–Stokes system, different techniques 

have been proposed. Efficient schemes employ multigrid methods with suitably defined smoothing schemes (see 

Trottenberg, Oosterlee & Schüller [85] and John [48]), or use pre conditioners based on the Schur complement of 

the block   matrix system defined by velocity and pressure matrices (cf. [55], [53], [22], see also the books by Turek 

[88] and Elman, Silvester & Wathen [23]).  

3. A MULTISCALE APPROACH TO LARGE EDDY SIMULATION 

The definition of a LES needs to distinguish between resolved and unresolved scales in order to formulate the sub 

grid viscosity term. Traditional methods use low-pass filters to extract the large-scale information from the Navier–

Stokes equations and introduce the sub grid viscosity [77]. However, this spatial filtering is problematic close to 

domain boundaries. These problems can be traced back to so-called commutation errors [7], [20]. Moreover, finding 

appropriate boundary conditions for the averaged large scales is to date an open problem. An alternative approach to 

LES is based on the variation multiscale method [44], introduced by Hughes, Mazzei, and Jansen [46]. The ideas are 

closely related to the concept of dynamic multilevel methods, described in Dubois, Jauberteau & Temam [19], and 

the multiscale turbulence analysis in Collis [16]. In this framework, filters are replaced by variation projections onto 

appropriate subspaces. The space for admissible velocity solutions is decomposed into      
     

    ̂  

u is a space associated with mesh size 3h, representing large resolvedu , representing small resolved scales, and 

finally, the space of unresolved scales . We choose a resolution of 3h, however, different definitions of large 

resolved scales are common as well, see the review article by Gravemeier [30]. Applying an equivalent 

decomposition for pressure, we get (following Harten’s notation [40]) 

 

the form that contains all the left-hand-side terms of the weak form of the Navier–Stokes equations (2.6). The aim of 

any numerical method is to find numerical approximations uh, ph in the resolved subspace V h u Vp according to 

the direct sum decomposition (3.3). A systematic way of doing so is to insert the decomposition (3.4) into the weak 

form (2.6), and to restrict the test functions to the space of resolved variables. Then, the nonlinear convective term is 

linearized and resorted in terms of resolved and unresolved quantities [46]. Hence, we search for Contains linear 

terms in (uˆ ,pˆ) and the linearized convection around uh, and the term B2 Contains the quadratic convection term. 

For the numerical approximation to be computable, these two terms need to be substituted by some modeling that 

eliminates the unresolved variables.  

Note that the sub grid viscosity is only applied to the smaller of the resolved scales, as discussed, e.g., in the review 

articles by Grave Meier [30] and John [49]. A physical explanation for application of eddy viscosity only on small 

resolved scales is that energy transport occurs mainly on neighboring scale groups, so that the effect of a not 



adequately resolved viscosity is best modeled on the fine resolved scales [66].The implementation of a method 

according to the framework (3.5) with approximation (3.6) needs to distinguish between coarse and fine resolved 

scales. Standard methods for doing this are based on different polynomial orders for the FE basis functions, or two 

different grid levels as used, e.g., in geometric multigrid. Such methods have been presented by John & Kaya [50] 

and Grave Meier [29]. Papers discuss an implementation where this separation is performed on the algebraic 

equation system by using routines from algebraic multigrid. 

4. SIMULATION OF TWO-PHASE FLOW 

We consider the dynamics of two immiscible incompressible fluids separated by an interface ¡ as displayed in Fig. 

4.1. By 1 we denote the region occupied by the first fluid, and by 2 the region occupied by the second. We assume 

that the flow is laminar, i.e., the Reynolds number is low for the considerations in this chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic view of a two-phase flow problem. Fluid 1 occupies region 1, and fluid 2 occupies 2. The 

interface  separates the two fluids. 

 

The motion of each fluid is described by the Navier–Stokes equations (2.1) – (2.2) using the variables and 1, 2. 

Extra conditions are necessary to describe the behavior on the interface. A widespread formulation is to pose the 

two-phase flow problem on the whole domain  with variables u and p that take the respective velocity and pressure 

values in the individual domains. Generally, the fluid densities ½i and viscosities ¹i are different for the two fluids. 

Hence, the material parameters ½ and ¹ in the global momentum equation have a discontinuity on the interfaceHere, 

¾ is a constant specifying the relative strength of the surface tension, · denotes the interface curvature, n the 

direction normal to the interface (pointing into 2), and ±¡ is a delta function that localizes the force to the interface. 

The interface ¡ is transported by the local fluid motion The variables in a single-domain formulation comprise kinks 

and discontinuities due to changes in material parameters and forces: The discontinuous viscosity introduces a 

discontinuity in the symmetric gradient "(u). Similarly, due to the distributional character of the delta function ±¡ 

there is a jump in pressure proportional to ¾·. Any change in curvature tangential to the interface gives rise to a 

discontinuity in the pressure derivative normal to the interface as well as the viscous stress tensor. The conditions 

describing the irregularities in velocity and pressure over the interface  are called jump conditions, see Edwards, 

Brenner & Wasan [21] and Lee & LeVeque [59]. Because of different fluid densities, gravitational forces are often 

essential for the dynamics of two-phase flow 

4.1 OVERVIEW OF NUMERICAL MODELS 

The two main challenges in the numerical simulation of two-phase flow are the representation of the interface as it 

evolves in time, and the evaluation of the distributional force term (4.1). Several discrete approaches have been 

proposed during the last decades. There are two main strategies to couple the interface evolution problem to the 

Navier–Stokes equations discretized on a fixed grid 

The first strategy is to explicitly track the interface position by introducing an additional discrete set of marker 

points or marker elements that describe the interface. These methods are called front tracking and were introduced in 

different variants by Peskin [71] and Glimm et al. [27], and reviewed in the articles [78], [86], and [89]. A special 

class of front tracking schemes are the immersed boundary method by Peskin (see Peskin’s [72] review paper) and a 

more accurate variant, the immersed interface method, by LeVeque and co-workers [59], [60], [61]. The evolution 

of the interface in front tracking schemes is accomplished by Lagrangian advection of the marker points, and the 

surface tension force is generally evaluated based on a discrete approximation of the delta function around the 

interface. Normal vectors and curvatures can be calculated using the interface points by straight-forward geometric 

identities. Explicit descriptions are very powerful because they allow to include general models of the interface, like 

elastic forces in immersed boundary and interface implementation [72]. However, the methods are quite difficult to 



implement because the marker points need to interact with the fluid grid in order to describe advection and interface 

forces. Straight-forward implementations are also prone to unphysical changes of the area/volume of the respective 

fluid. To retain an accurate interface representation, the marker points need to be redistributed when the interface is 

deformed. The second strategy is front-capturing, where the interface is implicitly defined. Historically, the first 

scheme of this kind was the marker-and-cell method proposed by Harlow and Welch [39], and can be considered to 

be a volume tracking method. Here, one fluid is colored by marker particles whose location is adverted with the flow 

field. The position of the interface can then be reconstructed from this particle field. An extension of this approach is 

to replace the marker particles by a marker function. This approach has been pursued by Noh & Woodward [65] and 

Hirt & Nichols [42], who introduced the volume-of-fluid (VOF) method. VOF includes an additional variable that 

stores the fraction of the first fluid on the total fluid for each cell. From the volume fractions, the position of the 

interface can be reconstructed, e.g., by defining line segments. For details of the reconstruction, including higher 

order schemes, we refer to Scardovelli & Zaleski [78] and Sethian [79], and references therein. The advection of the 

interface is usually implemented by increasing or decreasing the volume fraction depending on the composition of 

neighboring cells and the velocity field. To put surface tension force in VOF into practice, several different 

approaches are common. One is to use discrete delta functions in combination with the reconstructed interface, and 

another employs the continuous surface tension approach by Brackbill, Kothe, and Zemach [11], see also the review 

by Tryggvason et al. [86]. The advantage of VOF methods is the volume conservation and a natural mechanism for 

breakup and fusion of bubbles. However, the reconstruction of the interface and the interface motion are 

considerably more complicated to implement here than for front tracking methods. While VOF methods operate on 

the discrete level, a continuous front capturing framework is provided by the level set method, introduced by Osher 

& Sethian [70] and first applied to two-phase incompressible flow by Sussman, Smereka&Osher [81]. Yet another 

method is provided by the phase field method, formulated by Jacqmin [47] for the simulation of two-phase flow. 

The methods discussed are based on the latter two approaches, which are discussed in detail in the following two 

sections. 

4.2 LEVEL SET MODELS 

The basic idea of level set methods is to define the interface implicitly as the zero contour line of a function Á that is 

defined in . Level set methods allow for a straight-forward evaluation of normal vectors by setting and curvature. 

Both these quantities can be computed locally from on the same computational mesh as the equations of fluid flow. 

The mechanism for moving the interface in level set methods is advection of the function with local fluid velocity. 

This is an additional partial differential equation coupled to the Navier–Stokes equations. The advection can be 

solved with standard tools for hyperbolic transport equations, like upwind finite difference/volume schemes or 

stabilized finite element methods. The advection can be implemented so that the volume is conserved, since the 

velocity is divergence-free 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Representing an interface by level set functions Á. 

 

The most popular choice for a level set function is the signed distance function Á, depicted in Fig. 4.2(a). We refer to 

the books by Sethian [79] as well as Osher and Fedkiw [69] for an extensive discussion of these methods. A signed 

distance function encodes the distance of a particular point to the interface, and different signs identify the two 

fluids. A signed distance function has the property almost everywhere. A benefit of this choice is that the integral in 

the surface tension force can be simplified to a one-dimensional discrete delta function as Z 



where x denotes an arbitrary point in the computational domain and y(s) is the image of a parametrization of the 

interface, see, e.g., [79]. However, it has been shown by Engquist, Tornberg, and Tsai [24] that such an 

approximation can lead errors in the force unless the width h of the delta function is varied. Recent implementations 

therefore reconstruct the interface position from Á and apply a d-dimensional discrete delta function that does not 

show these consistency problems. Since the information from Á is only needed in a region around the interface, so-

called narrow-band level set implementations are widely used. These methods calculate Á only on a few grid cells 

around the interface, often in combination with high-resolution grids. We refer to Adalsteinsson and Sethian [1] for 

details. To start a level set calculation, an initial profile needs to generated given a certain interface position. 

Moreover, the flow field as well as inaccuracies in the numerical scheme deform the signed distance function in the 

course of the simulation. Therefore, algorithms have been proposed to (re-)initialize the signed distance function. 

These algorithms enforce the property for example, by solving the partial differential equation 

to steady state, where S(Á0) is a sign function with value 1 in the first fluid and value ¡1 in the other (see, e.g. [69]). 

However, discretization of the re initialization scheme do not preserve mass, so that the overall level set 

implementation based on signed distance functionsmay suffer from unphysical volume changes in the fluid phases. 

Another choice is to use a smoothed color/indicator function as depicted in Fig. 4.2(b). Such a function is (almost) 

constantly 1 away from the interfaces, with positive value in one region and negative value in the other. Around the 

interface, there is a transition region where the function smoothly switches from one value to the other. This 

function Á can be calculated from the re initialization equation (cf. Olsson and co-workers [67], [68]) 

The factor two comes from the fact that the function switches from¡1 toÅ1. This scheme for evaluating the interface 

force corresponds to the continuous surface tension model proposed by Brackbill, Kothe, and Zemach [11]. A 

disadvantage of the formulation with a smoothed color function is that the evaluation of curvature is potentially less 

accurate because it is calculated from a steep profile. This generally increases resolution requirements compared to 

the signed distance function approach. Another drawback of the smoothed indicator function is that the function 

needs to be defined on the whole domain in order to conserve volume.  

4.3 PHASE FIELD MODELS 

All the methods discussed above are based on the mathematical model for interfacial tension, assuming a continuous 

PDE model for fluid dynamics that does not take processes on the level of atoms and molecules into account. The 

numerical approximations aim at discretely reproducing the effect of a delta function, and evaluating the curvature 

to determine the strength of the surface tension. A different approach takes chemical considerations of the interface 

into account. The so-called van der Waals hypothesis [90] states that immiscible fluids actually mix on molecular 

level, forming a diffuse interface. The profile of the interface is given by a balance of random molecular motion and 

molecular attraction, as devised by Cahn and Hilliard [14]. The considerations are based on the free energy of a 

molecule, given.  

Where C denotes the concentration and ª(C) Æ (C Å1)2(C ¡1)2. Similar to the smoothed color function (4.6), the 

function seeks to attain the two equilibrium values C Æ §1, which is driven by the double-well potential ª(C). The 

gradient term on the other hand enforces a smooth transition. The system seeks to minimize the energy. 

 

Which is the same form as for the continuous surface tension model, that is, equation multiplied by curvature ·. 

Boyer [9] extended the phase field model to describe motion of fluids with different densities and viscosities. The 

phase field model can be augmented in order to include contact forces of the interface with solid walls [47], which 

results in flux-boundary conditions on the chemical potential Ã. This approach allows for setting static contact 

angles that correspond to physical wetting properties. The direct inclusion of contact line dynamics is different from 

the other approaches in computational multiphase dynamics, where additional mechanisms as slip-velocities and 

near-wall interface diffusion need to be added, cf. [76], [92]. 

 

A considerable challenge in the simulation of phase field models is the high resolution requirements. Even though 

the interface width can be chosen considerably larger than molecular dynamics would suggest (see Villanueva and 

Amberg [91]), accurate results require sophisticated numerical approximations and fine computational meshes. 

Furthermore, the equations are nonlinear and contain fourth order derivatives. Several attempts have been made to 

make this approach more competitive, see for example the work by Kay and Welford [54]. 

 

5. CONCLUSIONS 

The method proposed in this paper aims at providing phase-field-like features without having to use all its terms 

everywhere. This is done so that the phase field method is reduced to a level set formulation in regions far away 

from contact lines. It will be necessary to perform an in-depth convergence study of level set models and phase field 

models on several test cases in two-phase flow dynamics. In particular, the resolution requirements of the two 



methods should be quantified in order to identify the precise benefits of the hybrid method. In our hybrid model, the 

equations have been coupled by a smoothly varying switch function. The influence of the switch function needs to 

be considered in an energy estimate in order to ensure stability of the coupling of the equations, which has up to date 

only been verified numerically. Since the numerical implementation of the equations is based on a system of two 

equations to avoid the direct appearance of fourth derivatives, the analysis needs to be performed in a way to 

correctly reflect the discretized state of the equations. 

We also aim at using our models for larger problems, especially three-dimensional simulations. For this purpose, 

parallel implementations of the flow solver and the coupled level-set/Navier–Stokes system are necessary. Within 

the software that was used, it is possible to use parallel assembly and linear algebra routines. For a Stokes problem 

coupled to an advection equation, a parallel version for up to about 50 processors has already been implemented by 

the author of this paper. The objective is to apply this implementation framework to the coupled Navier–

Stokes/level-set system and to eventually extend it to a massively parallel implementation for even larger systems. 

The hybrid level-set/phase-field method is a potential tool for improving the simulation of multi-phase flow in 

porous media [17]. A first step in that direction is to apply the new model to more complicated geometries, like, e.g., 

channels with oscillating walls or flow around small obstacles. Small scale results are a helpful tool in the simulation 

of subsurface flow like the prediction of the flow in oil and gas reservoirs. The imposition of a pressure gradient on 

a small-scale material configuration induces a flow field, which can be used to determine values for the permeability 

of that configuration. The permeability tensor is one of the main input parameter in coarse-scale simulations based 

on Darcy’s law. In this, a study regarding error sources in the discrete approximation with the conservative level set 

implementation is presented. These results point out directions where the method needs to be improved. One such 

direction concerns the accuracy in the curvature calculations. A particularly easy approach is to use higher order 

finite elements for representing the level set function. When keeping the interface width constant, increasing the 

order of approximation considerably increases resolution of the interface, and thus, accuracy of normal and 

curvature that rely on the interface representation. This improvement should be advantageous for the overall 

accuracy, even though a small imbalance in the force representation is introduced. Such a strategy increases the 

costs for the level set portion of the algorithm if the same mesh is used as for the Navier– Stokes equations, though. 

An alternative would be to coarsen the level set mesh in regions away from the interface. This is reasonable since in 

these remote regions, only the momentum and continuity balances need to be represented accurately, while the level 

set equation does not contain any additional information. Similarly, the interface region can be resolved by more 

mesh points than there are used for the Navier–Stokes equations. However, this requires a special implementation 

for the evaluation of the surface tension force in the finite element algorithms because the variables are related to 

different meshes. An alternative hybrid approach that might be taken into account is to not mix the level set 

formulation with the phase field formulation as has been done in this paper, but to use the phase field model as a 

micro-scale input to a macro-scale formulation based on a level set description of two-phase flow. A heterogeneous 

multiscale approach has been proposed by Ren and E [75] for modelling the interaction of macro-scale fluid flow by 

micro-scale information from molecular dynamics. The response on molecular level provides information about the 

expected motion of contact lines during one time step. This coupled model behaves differently than large-scale level 

set model, which would assume zero velocity. It is conceivable that a similar interaction could be applied for a micro 

scale simulation done with the phase field model. The difficulty of such a micro macro coupling is to find 

appropriate transfer operations from the micro scales to the macro scales. Suitable boundary conditions for the 

Cahn–Hilliard sub problem given the solution of a macro-scale level set model are needed, as well as a shear 

velocity for the macro-scale Navier–Stokes equations, based on the results from a micro model. 
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